What is the lifetime value of customers?

Luke Stanke set the #WOW2022 challenge this week (see here) asking us to visualise the lifetime value of customers. I have to admit, I did struggle to really understand what was being requested, and to get the numbers to match Luke’s. I ended up referring to my own blog post on a similar challenge Ann Jackson set in week 2 of 2021 to get the calculations I needed 🙂

We first need to define the quarter that each customer made their first purchase.

Customer First Order Quarter

DATE(DATETRUNC(‘quarter’, {FIXED [Customer ID]:MIN([Order Date])}))

The {FIXED LOD} calculation returns the minimum order date per customer, then truncates this to the first day of the quarter that date falls in.

We then need to determine the difference in quarters between the Customer First Order Quarter and the quarter associated to the Order Date of each order in the data set. The requirement indicated we needed to add 1 to the result. I split this into multiple calculated fields. Firstly,

Order Date Quarter

DATE(DATETRUNC(‘quarter’, [Order Date]))

gets me the quarter of each Order Date, then

Quarters Since First Purchase

DATEDIFF(‘quarter’, [Customer First Order Quarter], [Order Date Quarter])+1

Let’s pop these fields out into a table to check things are behaving as expected.

Add Customer First Order Quarter and Order Date Quarter to Rows as discrete exact dates (blue pills), and add Quarters Since First Purchase to the Text field, but set it to be a dimension, so it is disaggregated.

Now we need to count the number of distinct customers that made a purchase in each Customer First Order Quarter (the cohort)

Count Customers Per Cohort

{FIXED [Customer First Order Quarter]: COUNTD([Customer ID])}

Add this to to the sheet, along with Sales (I moved Quarters Since First Purchase to rows too)

As expected, we can see the same customer count for each Customer First Order Quarter cohort.

We’ve now got all the building blocks to move on the the next requirement, but I’m going to rearrange the table a bit, to start to reflect the data actually needed for the output.

The x-axis of the chart is going to be based on the Quarters Since First Purchase field, so move that to be the first column of data (1st entry in Rows). Then remove Customer First Order Quarter and Order Date Quarter, as we don’t need this level of information in the final viz.

We now have the sum of all the customers and the total sales, so we can now create the division reqiurement

Sales / Customer

SUM([Sales])/SUM([Count Customers Per Cohort])

I set this to currency $ with 0 dp.

Add this to the table

Then to make this a running total, create a Running Total quick table calculation off of this field (right click on field -> Quick Table Calculation -> Running Total). Add back in Sales/ Customer.

We’ve now got all the components needed to build the viz, but do require an additional calculation to be displayed in the tooltip, which is the difference between each row.

Right click the existing running total Sales / Customer pill (the one with the triangle) and choose to Edit Table Calculation. Tick the Add secondary calculation checkbox and choose the Difference From table calc to run down the table, making the calc relative to the previous row.

Re-add a Running Total quick table calc to the other Sales / Customer pill, and then add Sales / Customer back into the view (it’s annoying that Tableau won’t let you add multiple pills of the same measure name unless they have a different calculation against them).

The snag with this is that we need a value to display for the first row. We need to create a new field that can reference the data in the second table calculation. Click and drag the ‘difference’ table calculation field into the Data pane, and name the field Difference. It should look like below, but you shouldn’t have needed to type any of that.


ZN(RUNNING_SUM([Sales / Customers])) – LOOKUP(ZN(RUNNING_SUM([Sales / Customers])), -1)

Now create a new calculated field


IF FIRST()=0 THEN [Sales / Customers] ELSE [Difference] END

Set this to a customer number format of 1dp, prefixed by + (the data is always cumulative so is never going to have a -ve value, so this works).

Now we can build the viz.

On a new sheet add Quarters Since First Purchase to Columns as a continuous dimension (green pill), then add Sales / Customers to Rows and set to be a Running Total quick table calc. Change the mark type to be a Gantt Bar.

Create a new field



and add this to the Size shelf.

Add a second instance of the Sales / Customer running total calc (press ctrl and click and drag the existing pill in rows to create another next to it). Change the mark type of this to be bar. Remove the Size pill, and then click the Size shelf button, and set the Size to be fixed, aligned left.

Now make the charts dual axis and synchronise the axis. Set the colour of each mark type to the relevant palette, and set the mark borders to None. Hide the right hand axis.

On the All marks card, add the Tooltip:Difference and Count Customers Per Cohort fields to the Tooltip shelf, and amend the tooltip to match.

On the bar marks card, click the Label shelf button and tick the show mark labels checkbox. Align these left.

Remove the left hand axis, remove all gridlines and row/column dividers. Add column axis ruler and dark tick marks

Edit the x-axis and rename the title to Quarter of Order.

If you find you have the x-axis going from 0 to 18, then change the datatype of Quarters Since First Purchase from a whole number to decimal. (right click pill in data pane -> change data type -> Number(decimal).

Add the chart to a dashboard and boom! you’re done. My public viz is here. (note, I did notice some vertical dividers displaying in the area chart on public, but think this is a Tableau Public ‘bug’ as I’ve switched off all the lines I can think of, and Desktop displays fine….

Happy vizzin’!



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s