COVID-19 New Case Trends Cartogram

The challenge this time was set by Luke using the data being collated via Tableau’s Covid-19 data hub.

This viz is essentially equivalent to a small multiple display where the charts for a specific dimension (in this case State) get displayed across numerous rows and columns. The difference here, is the row and column for the State to be displayed in, is specifically defined, rather than just sequentially based on how the data is being sorted.

Luke very kindly provided the logic to determine the rows and columns.

Building out the data

Once again, I’m going to start by putting all my data into a table so I can check my calculations, especially since this challenge does involve table calculations (there’s a hint on the Latest Challenges page)

Data Source Filter

Although not explicitly mentioned in the requirements, the information we need to present is based on the dates from 1st March 2020 to 31st July 2020. I messaged Luke to check this, before I then realised it was stated in the title of the viz – doh!

To make things easier, I therefore added a data source filter to remove all the other dates, setting the Report Date to range from 01 March 2020 to 31 July 2020 (right click on the data source -> add data source filter

I then added the basic fields I needed to a table

  • Province State Name to Rows
  • Report Date discrete, exact date (blue pill) to Rows, custom formatted to mmmm, dd
  • People Positive New Cases to Text

I excluded the fields where Province State Name = Null

We need to calculate the 7 day rolling average per Province State Name which we can do by using the UI to create a Moving Average quick table calculation against the People Positive New Cases pill, and then editing to compute over the previous 6 records (+ the current record makes 7 days). But I want to be able to reference this field, so I’m going to ‘bake it’ into the data model by creating a specific calculated field

7 day moving Avg

WINDOW_AVG(SUM([People Positive New Cases Count]), -6, 0)

Add this into the table, and edit the table calculation to compute by Report Date only and set the Null if not enough values checkbox

Do a basic sense check that the averages are correct by summing up 7 sequential rows and working out the average by dividing by 7.

So it looks like we’ve got the core measure to be plotted, but we’re going to need some additional fields in the presentation.

Again it’s not explicitly stated in the requirements, but it is in the title, that the values plotted need to be normalised. This is to ensure the data for each state is visible; if a state with a relatively low number of cases is positioned in the same row as one with a very high number of cases, it will be hard to see the data for the state with the low cases, because while the axis can be set to be independent, this will only work against a row and not an individual instance of a chart.

To normalise, we need to understand the maximum 7 day rolling average for each state.

Max Avg Per State

WINDOW_MAX([7 day moving Avg])

Add this to the table, setting both the nested table calcs to compute by Report Date.

In normalising, what we’re essentially going to do is determine the 7 day moving Avg as a proportion of the Max Avg Per State, so every value to plot will be on a range of 0-1.

Normalised Value

[7 day moving Avg]/[Max Avg Per State]

Format this to 2 dp, and add to chart, remembering to check the table calcs continue to compute by Report Date only.

Above you can see the max value for Alabama occurred on 19th July, so the Normalised Value to plot is 1

In the chart displayed, each State is titled by the name of the State. In a small multiple grid of rows & columns, we can’t use a dimension field for this, as it won’t appear where we want it. Instead we’re going to achieve this using dual axis, and plotting a mark at the centre point. For this we need to determine the centre date

Centre Date


FLOOR(DATEDIFF(‘day’,{FIXED:MIN([Report Date])},{FIXED:MAX([Report Date])})/2)
{FIXED:MIN([Report Date])}

This looks a bit complex, so I’ll break it down. What we’re doing is finding the number of days between the minimum date in the data set and the maximum date in the data set. This is

DATEDIFF(‘day’,{FIXED:MIN([Report Date])},{FIXED:MAX([Report Date])})

We’re then halving this value ( /2) and rounding it down to the nearest whole number (FLOOR).

We then add this number of whole days to the minimum date in the data set (DATEADD), to get our central date – 16 May 2020.

Now we need a point where we can plot a mark against that date. It needs to be above the maximum value in the main chart (which is 1). After a bit of trial and error, I decided 1.75 worked

Plot State

IF [Report Date] = [Centre Date] THEN 1.75 END

Finally we need to create our Rows and Columns fields which provides the co-ordinates to plot each state. The calculations for these were just lifted straight out of the requirements – thanks Luke!

Building the Viz

Start by adding the Rows and Columns fields to their respective shelf. Set them to be discrete dimensions (blue pills). You should immediately see a ‘map’ type layout of the US States.

Exclude the Null Rows value.

Now add Report Date as a continuous exact date (green pill) to Columns and Normalised Value to Rows, remembering to set the table calc to compute by Report Date only for all nested calculations. Change the mark type to Area.

Add 7 day moving Avg to Label and set the label to display the max value only and adjust the font size – I ended up at 7pt. Then add Province State Name & People Positive New Cases Count to Tooltip. Format the tooltip to match.

Remove all column/row lines and grid lines, zero lines etc.

There is a requirement to ‘add a line underneath each of the area trends’.

For this I added a 0 constant reference line formatted to be a solid black line.

But you’ll notice that for the charts that sit directly side by side, the line seems to be continuous, but I want to break it up. I re-added the column divider line to be a thick white line to get the desired effect.

Right, now lets get the State label added.

Add Plot State to Rows before Normalised Value and change the aggregation from SUM to MIN.

Change the Mark Type to Text and move the Province State Name field from Tooltip to the Text shelf. Adjust the text label to remove any other fields that are displaying, and resize the font – again I used 7. Clear the Tooltip for the this mark, so nothing displays on hover.

Make the chart dual axis and synchronise axis. Remove the Measure Names pill from the Colour shelf on both marks cards which will have automatically been added.

And now all you need to do is remove all the headers (uncheck Show Header) against Rows, Columns, Report Date & Plot Value, then right click on the >8k nulls label at the bottom right and select Hide Indicator.

You’re all done – you just need to add to a dashboard now. My published version is here.

I really enjoyed this challenge – a nice mix of calculations & format complexity but not overly cumbersome, which meant this blog didn’t take so many hours to write this week 🙂

Happy vizzin’! Stay Safe!


What is the distribution of total orders by customer?

Luke Stanke set the challenge this week, and posted a ‘sneak peak’ on Twitter before the challenge was formally released

Challenges from Luke can sometimes be on the harder end of the scale, so with the bit of extra time available and only the gif in the tweet as a clue , I had a play to see if I could get close at all. And surprisingly I could, so once it was formally issued, it was just a case of tidying up some of my calcs.


First up we need to establish the basic calculations

# Customers

COUNTD([Customer ID])

# Orders Per Customers

{FIXED [Segment],[Customer ID]: COUNTD([Order ID])}

Plotting these out onto a table with Segment we get

Note #Orders Per Customers needs to be set to be a discrete dimension.

So while this shows us a summary of the number of customers, we’ve only got 1 mark showing the summarised count. When plotting the chart we need something else in the view that will generate more marks. This is Customer ID.

At this point in order to help us build up our tabular view to ‘see’ what’s going on, I’ll filter the table to just show Segment = Consumer, and I’ll add Customer ID to Rows

As expected, our # Customers is now showing a count of 1 per row, but the data is now expanded as we have now got a row (ie a mark) per customer for each # Orders Per Customer ‘bucket’. But we still need a handle on the total customers in each ‘bucket’.

Customers Per Order Count

WINDOW_SUM([# Customers])

Adding this to the view and setting the table calc to compute based on Segment & Customer ID, we get the summarised value back again.

But we don’t want to actually show that number of marks; the number of circles to plot on the chart is dependent on a user parameter:


Based on the requirements, if the number of customers is 15 and the user parameter is 5, then 3 circles should be drawn (15 / 5 =3 ), but if the number of customers was 14, only 2 circles should be drawn (14 / 5 = 2.8), ie the number of circles will always be set to the integer of the equal or lesser value (essentially the FLOOR() function). This can also be achieved by

Marks to Plot

INT([# Customers per Order Count]/[pMarkIndicator])

For some reason FLOOR can’t be used in the above as a table calculation is being used, but INT does the job just fine, and adding to the tabular view and adjust the table calculation accordingly we get

ie for the Consumer Segment, 6 customers have made 1 order in total, so based on batching the customers into groups of 5, this means 1 circle should be displayed. Whereas, 30 customers have made 3 orders in total, so 6 circles should be displayed.

But we can’t actually reduce the amount of rows (ie marks) displayed – we either have 1 row (by removing Customer ID) or a row per customer. But that’s fine, we don’t need to.

What we want is something in our data to group each row into the relevant batch size.

First up let’s generate an ID per row for each customer that restarts for each #Orders Per Customer.



Add this as a discrete pill to Rows, and adjust the table calc

Now we have this, we calculate which ‘column’ each customer can sit in, a bit like what we would do if we were building a small multiple table, arranging objects in rows and columns (see here for an example of what I mean).


[Index]%([Marks to Plot])

This uses the modulo (%) notation which returns the remainder of the division sum. Lets put this on the view

For customers who have only ordered once, and where we’re only going to plot 1 mark, the Cols value is the same (0) for all rows.

Whereas for customers who have ordered twice, and where we want to plot 2 marks, the Cols value is either 0 or 1.

We’ve now got a value we can use to plot on an axis. We’re still going to plot a mark for each Customer ID, but some marks will be plotted in the same position, ie on top of each other, which therefore looks like just one mark.

Let’s show this more graphically, by duplicating the sheet, deleting some pills, moving some around, changing some to continuous, and setting the mark type to circle as below

Change the pMarksIndicator parameter and the number of circles will adjust as required.

So far, so good. We’ve got the right number of marks, it’s just not looking as nice and symmetrical as it should be.

We need to shift the marks to the left. But how far it shifts is dependent on whether we’ve plotted an odd or even number of marks.

If we have an odd number, the middle mark should be plotted at 0. If we have an even number the middle two marks should be plotted at -0.5 and +0.5 respectively. The calculation below will achieve this

Cols Shifted

IF [Marks to Plot]%2 = 0 //we’re even
THEN [Cols] – ([Marks to Plot]/2) + 0.5
ELSE //we’re odd
[Cols] – (([Marks to Plot]-1)/2)

To demonstrate this, I’ve added Cols Shifted along side Cols on the viz (this time make sure all the table calculation settings (including the nested calcs) are applied to compute based on Customer ID only which is different from the calcs above)..

Now you can see how it all works, you can remove the Cols and the Segment from the Filter shelf.

And now its just a case of applying the various formatting to clean up the display, and adding to the dashboard.

My published version is here.

Happy vizzin’! Stay Safe!